PLEASE ANSWER ALL QUESTIONS. PLEASE EXPLAIN YOUR ANSWERS.

1. (a) Find all the pure and mixed-strategy Nash Equilibria of the following game.

	Player 2		
	t_{1}	t_{2}	t_{3}
s_{1}	1, 0	5,2	1,5
s_{2}	3, 3	2,1	0,2

Solution: There are two pure-strategy NE: $\left(s_{2}, t_{1}\right)$ and $\left(s_{1}, t_{3}\right)$. For the mixedstrategy equilibrium, let P1's strategy be denoted ($p, 1-p$) and P2's be denoted $\left(q_{1}, q_{2}, 1-q_{1}-q_{2}\right)$. Notice that t_{2} is strictly dominated by t_{3}, so in equilibrium $q_{2}=0$.
Thus, the players are indifferent between their (non-dominated strategies) when

$$
\begin{gathered}
q_{1}(1)+\left(1-q_{1}\right)(1)=q_{1}(3)+\left(1-q_{1}\right)(0) \Leftrightarrow q_{1}=1 / 3 \\
p(0)+(1-p)(3)=p(5)+(1-p)(2) \Leftrightarrow p=1 / 6 .
\end{gathered}
$$

So the mixed-strategy NE is $\left(p ; q_{1}, q_{2}\right)=(1 / 6 ; 1 / 3,0)$.
(b) Suppose now that we introduce a new strategy for Player 1. Denote the corresponding game by G :

Player 2

Player

	t_{1}	t_{2}	t_{3}
s_{1}	1,0	3,2	1,5
s_{2}	3,3	2,1	0,2
s_{3}	0,4	10,10	0,11

Use iterated elimination of strictly dominated strategies to simplify the game. Explain briefly each step (1 sentence). What is the set of pure and mixed-strategy Nash Equilibria of G ?
Solution: Again, t_{2} is strictly dominated by t_{3}. After eliminating t_{2}, then s_{3} is strictly dominated by s_{1}. After eliminating s_{3}, no strategies are strictly dominated. This game is equal to the game in (a) after eliminating the strictly dominated strategy t_{2}. Hence, the set of NE is the same in the two games.
(c) Now suppose we repeat G twice. Denote the resulting game by $G(2)$. How many proper subgames are there (not counting the game itself)? Show that there is a Subgame-perfect Nash Equilibrium of $G(2)$ in which $\left(s_{3}, t_{2}\right)$ is played in stage 1 .
Solution: One proper subgame after each possible outcome in G : 9 proper subgames. Proposed equilibrium strategies: in stage 1 , play $\left(s_{3}, t_{2}\right)$; in stage 2 , play $\left(s_{1}, t_{3}\right)$ on the equilibrium path and (s_{2}, t_{1}) off the equilibrium path.
Check deviations: In stage 2, a NE is played in each subgame, so no profitable deviations. In stage $1, \mathrm{P} 1$ gets $10+1=11$ on the equilibrium path, and at most $3+3<11$ from a deviation. P2 gets $10+5=15$ on the equilibrium path, and at most $11+3<15$ from a deviation. Hence, the proposed equilibrium strategies form a SPNE.
2. Signaling. Consider the following signaling game.

(a) Find all the (pure strategy) separating Perfect Bayesian Equilibria (PBE).

Solution: $(L R, u u ; p=1, q=0)$ is the unique separating PBE.
Case 1. Suppose $m\left(t_{1}\right)=L$ and $m\left(t_{2}\right)=R$. Then $p=1$ and $q=0$. Thus, $a(L)=u$ and $a(R)=u$. Can check that $u_{S}\left(L, u ; t_{1}\right) \geq u_{S}\left(R, u ; t_{1}\right)$ and $u_{S}\left(R, u ; t_{2}\right) \geq$ $u_{S}\left(L, u ; t_{2}\right)$ hold. Hence: PBE.
Case 2. Suppose $m\left(t_{1}\right)=R$ and $m\left(t_{2}\right)=L$. Then $p=0$ and $q=1$. Thus, $a(L)=d$ and $a(R)=d$. Can verify that $u_{S}\left(R, d ; t_{1}\right)<u_{S}\left(L, d ; t_{1}\right)$. Hence, not a PBE.
(b) Find the (pure strategy) pooling equilibrium in which both types send message L. Does it satisfy signaling requirement 5 (SR5)?
Solution: Suppose $m\left(t_{1}\right)=m\left(t_{2}\right)=L$. Then $a(L)=u\left(\right.$ since $\frac{1}{2}(3)+\frac{1}{2}(0)>$ $\left.\frac{1}{2}(0)+\frac{1}{2}(1)\right)$. Check sender's incentives: $u_{S}\left(L, u ; t_{1}\right) \geq u_{S}\left(R, a(R) ; t_{1}\right)$ for all $a(R)$ whereas $u_{S}\left(L, u ; t_{2}\right) \geq u_{S}\left(R, a(R) ; t_{2}\right)$ only if $a(R)=d$. It is optimal for the receiver to choose $a(R)=d$ if

$$
q(1)+(1-q)(1) \geq q(0)+(1-q)(2) \Leftrightarrow q \geq 1 / 2 .
$$

Thus: ($L L, u d ; p=1 / 2, q \geq 1 / 2$) is a pooling PBE.
Notice that R is strictly dominated by L for t_{1}, but not for t_{2}. Therefore, SR5 prescribes that $q=0$. Hence, the pooling PBE we just found does not satisfy SR5.
(c) Explain in your own words the logic behind SR5. You may use the above game as an example.
Solution: SR5 is based on the idea of forward induction, and attempts to capture the intuition that no players should play strictly dominated strategies. Thus, in the above example, since playing R is strictly dominated for type 1 but not for type 2 , it seems more reasonable to think that a potential deviator is type 2 .
3. Consider a second-price sealed bid auction with two bidders, who have valuations v_{1} and v_{2}, respectively.
(a) First, assume that the values are distributed independently uniformly with

$$
v_{i} \sim u(1,2) .
$$

Thus, the values are private. Show that there is a symmetric Bayesian Nash Equilibrium where the players bid their valuation: $b_{i}\left(v_{i}\right)=v_{i}$ (recall that the auction format is second-price sealed bid).
(Hint: Look at whether the players can profitably deviate by bidding higher or lower.) Solution: Throughout suppose that j sticks to his equilibrium strategy: $b_{j}=v_{j}$. The probability that two bids are the same is zero, and therefore we only consider 'inequalities'.
Suppose player i deviates by bidding $b^{\prime}<v_{i}$. If $v_{j}>v_{i}$ then $b^{\prime}<b_{j}$ and player i loses in either case. If $v_{j}<b^{\prime}<v_{i}$ then player i wins and pays $p=v_{j}$ in either case. If $b^{\prime}<v_{j}<v_{i}$ then player i wins and gets payoff $v_{i}-v_{j}>0$ if he sticks to the equilibrium strategy, and he loses and gets payoff 0 if he deviates. Thus, $b^{\prime}<v_{i}$ is never a profitable deviation.
Suppose player i deviates by bidding $b^{\prime}>v_{i}$. If $v_{j}<v_{i}$ then $b^{\prime}>b_{j}$ and player i wins and pays $p=v_{j}$ in either case. If $v_{j}>b^{\prime}>v_{i}$ then player i loses in either case. If $b^{\prime}>v_{j}>v_{i}$ then player i loses and gets payoff 0 if he sticks to the equilibrium strategy, and wins and gets payoff $v_{i}-b^{\prime}<0$ if he deviates. Thus, $b^{\prime}>v_{i}$ is never a profitable deviation.
Hence, bidding b_{j} is weakly optimal for both players, and therefore a NE.
(b) Consider now the following common value setting. The auction format is still second price. Each player i observes a signal s_{i}, where

$$
s_{i} \sim u(1,2)
$$

The valuation of the players is the sum of the two signals: for each i,

$$
v_{i}=s_{1}+s_{2}
$$

The expected valuation of player i conditional on s_{i} is $\mathbb{E}\left[v_{i} \mid s_{i}\right]=\mathbb{E}\left[s_{1}+s_{2} \mid s_{i}\right]=s_{i}+\frac{3}{2}$. Suppose players bid their expectation, i.e. that $b_{i}\left(s_{i}\right)=s_{i}+\frac{3}{2}$. What is the expected value of player i conditional on s_{i} and conditional on winning the auction? I.e., what is $\mathbb{E}\left[v_{i} \mid s_{i}, i\right.$ wins $]$.
Solution: The expectation is

$$
\begin{aligned}
\mathbb{E}\left[v_{i} \mid s_{i}, i \text { wins }\right] & =\mathbb{E}\left[v_{i} \mid s_{i}, s_{i} \geq s_{j}\right] \\
& =\mathbb{E}\left[s_{i}+s_{j} \mid s_{i}, s_{i} \geq s_{j}\right] \\
& =s_{i}+\mathbb{E}\left[s_{j} \mid s_{i}, s_{i} \geq s_{j}\right] \\
& =s_{i}+\frac{1+s_{i}}{2} \\
& <s_{i}+\frac{3}{2}
\end{aligned}
$$

(c) Relate your answer in the last question to the concept of the winner's curse.

Solution: For player i, winning the auction means (in equilibrium) that the signal of player j was lower than i 's signal. Thus, winning the auction is 'bad news' for player i, in the sense that it lowers his valuation.
4. Consider the following exercise in which a buyer and a seller have valuations v_{b} and v_{s}, but only the seller knows the valuations. The buyer makes an offer of a price, and the seller chooses whether to accept. The details are as follows.

Valuations. The seller's valuation is uniformly distributed on the unit interval. I.e.

$$
v_{s} \sim u(0,1)
$$

The buyer's valuation is $v_{b}=k \cdot v_{s}$, where $k>1$ is common knowledge.

Information. Seller knows v_{s} (and hence v_{b}) but the buyer does not know v_{b} (or v_{s}).

Buyer. The buyer makes a single offer, p, which the seller either accepts $(a=1)$ or rejects $(a=0)$. (I.e., it is the buyer who sets the price, and seller who decides whether he accepts or rejects.) The buyer gets payoffs

$$
u_{b}(p, a)=\left\{\begin{aligned}
& v_{b}-p \text { if } a=1 \text { (seller accepts) } \\
& 0 \text { if } a=0 \text { (seller rejects) }
\end{aligned}\right.
$$

The buyer's strategy is just a choice of p, since he cannot condition his choice on v_{b}.

Seller. The seller's payoffs are

$$
u_{s}(p, a)=\left\{\begin{array}{r}
p \text { if } a=1 \text { (seller accepts) } \\
v_{s} \text { if } a=0 \text { (seller rejects) }
\end{array}\right.
$$

His strategy can be described as a function $a\left(p, v_{s}\right)$, where $a\left(p, v_{s}\right)=1$ corresponds to accepting the offer of p when his valuation is v_{s}, and $a\left(p, v_{s}\right)=0$ corresponds to rejecting it. Suppose that whenever he is indifferent, he accepts the offer.

We will look for a Perfect Bayesian Equilibrium (PBE).
(a) Show that in a $\operatorname{PBE}, a^{*}\left(p, v_{s}\right)=1$ if and only if $v_{s} \leq p$.

Solution: PBE requires the players to maximize utility in each information set, given their beliefs. Seller perfectly knows his valuation, so therefore his payoff from selling is p and his payoff from not selling is v_{s}. Thus, he sells only if $v_{s} \leq p$.
(b) Buyer's expected payoff from making an offer of p is

$$
\pi(p)\left(\mathbb{E}\left[v_{b} \mid \text { seller accepts, } p\right]-p\right)
$$

where $\pi(p)=\mathbb{P}($ seller accepts $\mid p)$.
i. Find $\pi(p)$ given $a^{*}\left(p, v_{s}\right)$.
ii. Find $\mathbb{E}\left[v_{b} \mid\right.$ seller accepts, $\left.p\right]$ given $a^{*}\left(p, v_{s}\right)$.

Solution: Using standard results on uniform distributions, then given a^{*} we have $\pi(p)=\mathbb{P}\left(v_{s} \leq p\right)=p$ for $p \in[0,1]$ and $\pi(p)=1$ for $p>1$. Furthermore,

$$
\mathbb{E}\left[v_{b} \mid \text { seller accepts, } p\right]=k \mathbb{E}\left[v_{s} \mid v_{s} \leq p, p\right]=k \cdot \frac{p}{2}
$$

for $p \in[0,1]$ and $k \cdot \frac{1}{2}$ for $p>1$.
(c) What is the PBE when $k>2$? What is the probability that trade takes place? How would the answer change if $k<2$?
Solution: Buyer's expected payoff for $p \in[0,1]$ are

$$
\begin{equation*}
p \cdot\left(k \cdot \frac{p}{2}-p\right)=p^{2} \cdot\left(\frac{k}{2}-1\right) \tag{1}
\end{equation*}
$$

For $p>1$ the payoffs are $\frac{k}{2}-p$. Clearly, for $k>2$, payoffs are strictly increasing for $p \in[0,1)$ and strictly decreasing for $p>1$. Continuity implies that the expected payoffs are maximized at $p^{*}=1$. The PBE is $\left(p^{*}=1, a^{*}\left(p, v_{s}\right)\right)$, where $a^{*}\left(p, v_{s}\right)$ is as above. Trade always takes place.
For $k<2$, payoffs are strictly decreasing for $p>0$. Therefore, expected payoffs are maximized at $p^{*}=0$. The PBE is $\left(p^{*}=0, a^{*}\left(p, v_{s}\right)\right)$, where $a^{*}\left(p, v_{s}\right)$ is as above. Trade never takes place. The truly excellent answer might note that there is a type of winner's curse at play here.

